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Time trend bid-ask spread (ctd)

Relative bid-ask spread Dow Jones stocks
(all stocks 1900-1928, DJIA stocks 1929-2000)

Spreads for the long run

Figure 1.  Bid-ask spreads on Dow Jones stocks
(all DJ stocks 1900-1928, DJIA stocks 1929-present)
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Time trend bid-ask spread (ctd)

NYSE value-weighted average effective spread
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Figure 1. NYSE value-weighted proportional effective spreads



Institutional trading

How do institutions trade prior to algorithms? To buy 100,000
IBM shares, they

I hire a broker-dealer to take down or shop a block
I hire NYSE floor broker who uses judgement to slowly

“work” the order
Broker-dealers now offer algos that minimize price concession
through a dynamic trading strategy that optimizes over price,
quantity, time, and venue

And, broker-dealers and hedge funds supply liquidity with algos
(e.g. D.E. Shaw, Getco,. . . )



Related literature

IO of liquidity supply
I competition: Kyle (1985), Biais, Martimort, and Rochet

(2000)
Free trading option of limit orders (Copeland and Galai (1983))

I monitoring public information flow is costly (Foucault,
Roëll, and Sandas (2003))

I AT may raise costs of non-AT limit orders (Rock (1990))
Optimal execution of large orders (Keim and Madhavan (1995),
Bertsimas and Lo (1998), Almgren and Chriss (2000))

I market vs. limit, aggressiveness (Harris (1998), Griffiths,
Smith, Turnbull, and White (2000), Lo, MacKinlay, and
Zhang (2002), Boehmer, Saar, and Yu (2005), Hasbrouck
and Saar (2007), Obizhaeva and Wang (2005))



What do we do?

We measure algo trading through normalized (electronic)
message traffic at the NYSE

I message traffic is electronic order submissions, cancels, and
trade reports

Panel regressions associate time-series increases in algo trading
with more liquid markets

I we exploit the exogenous, staggered introduction of
autoquote at the NYSE as an instrument to establish
causality
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Autoquote

Decimals in 2001 shrink inside quote depth

In October 2002 NYSE proposes “liquidity quote”
I firm bid and offer for substantial size (> 15, 000 shares)

“Autoquote” is proposed simultaneously to free up the
specialist to concentrate on the liquidity quote

I specialists had been manually disseminating the inside
quote

I software would now “autoquote” any change to book
Liquidity quote delayed, autoquote immediate

Autoquote is important for AT
I immediate feedback about terms of trade

I algo liquidity suppliers see abnormally wide inside quote
I algo liquidity demanders access quote more quickly
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Autoquote dummy as instrument for algo tradit

Table 4: Overall, Between, and Within Correlations Autoquote Analysis

This table presents the overall, between, and within correlations for the variables used in the autoquote
analysis. It is based on daily observations in the period when autoquote was phased in, i.e. December
2, 2003, through July 31, 2003. For variable definitions, we refer to Table 1. We exploit the exogenous
autoquote dummy (0 before the autoquote introduction, 1 after) to instrument for algo tradit in order to
identify causality from algo tradit to our liquidity measures. In the IV estimation, we exclude identification
off of a time trend (by adding time dummies) and thus solely rely on the nonsynchronous introduction of
autoquote (see Figure 5). Before we report the IV estimation results in subsequent tables, this table reports
correlations between the instrument (auto quoteit) and the endogenous variable (algo tradit) after removing
the time trend.

messa−
gesit

algo
tradit

share
turnoverit

vola-
tilityit

1/priceit ln mar−
ket capit

Panel A: Overall, between, and within correlation after removing the time trend
auto quoteit ρ(overall) 0.15* -0.05* 0.02* 0.03* 0.02* 0.10*

ρ(between) 0.23* -0.16* 0.06 0.09* 0.04 0.18*
ρ(within) 0.08* 0.03* -0.01* 0.00 0.01* -0.01*

Panel B: Within correlation by quintile after removing the time trend
auto quoteit Q1 ρ(within) 0.15* 0.03* 0.01* -0.00 0.03* -0.03*
auto quoteit Q2 ρ(within) 0.03* 0.04* -0.01* 0.00 -0.02* 0.01*
auto quoteit Q3 ρ(within) 0.05* 0.03* 0.00 -0.00 0.01 -0.02*
auto quoteit Q4 ρ(within) 0.01* 0.00 -0.00 -0.00 -0.01 0.01
auto quoteit Q5 ρ(within) -0.00 0.03* -0.02* 0.00 0.05* -0.04*
a: Based on the time means i.e. xi = 1

T

∑T
t=1 xi,t.

b: Based on the deviations from time means i.e. x∗i,t = xi,t − xi.
*: Significant at a 95% level.

F -tests reject null that instruments do not enter first-stage
regression for all our IV regressions



IV regression including T/O, volatility, price, and size

Lit = αi + γt + βAit + δXit + εit

Table 5: Effect of AT on Spread: Nonsynchronous Autoquote Introduction as Instrumental Variable

This table regresses various measures of the (half) spread on our algorithmic trading proxy. It is based on daily observations in the period when
autoquote was phased in, i.e. December 2, 2003, through July 31, 2003. We use the exogenous nonsynchronous autoquote introduction to instrument
for the endogenous algo tradit to identify causality from algorithmic trading to liquidity. We estimate

Lit = αi + γt + βAit + δXit + εit

where Lit is a spread measure for stock i on day t, Ait is the algorithmic trading measure algo tradit, and Xit is a vector of control variables, including
share turnover, volatility, 1/price, and log market cap. We always include fixed effects and time dummies. The set of instruments we use consists of
all explanatory variables, except that we replace algo tradit with auto quoteit. We regress by quintile and report t-values based on standard errors
that are robust to general cross-section and time-series heteroskedasticity and within-group autocorrelation (see Arellano and Bond (1991)).

Coefficient on algo tradit Coefficients on control variablesa

Q1 Q2 Q3 Q4 Q5 share
turnoverit

vola−
tilityit

1/priceit
ln mkt
capit

time
dum-
mies

DF test
statisticb

Panel A: quoted spread, quoted depth, and effective spread
qspreadit -0.52** -0.42** -0.43 -0.16 9.92 -2.80** 0.90** 108.30** -3.55** Yes -321.0**

(-3.23) (-2.21) (-1.44) (-0.05) (1.22) (-3.01) (9.70) (7.49) (-2.27)
qdepthit -3.47** -1.43 -1.99 15.49 0.61 -5.16 -1.64* -3.90 12.12 Yes -300.3**

(-2.50) (-1.16) (-1.07) (0.39) (0.19) (-0.64) (-1.87) (-0.03) (0.83)
espreadit -0.18** -0.32** -0.35 -1.63 4.65 -1.01** 0.69** 72.72** -1.27 Yes -329.8**

(-2.65) (-2.23) (-1.56) (-0.42) (1.16) (-2.32) (9.51) (10.91) (-1.45)
Panel B: spread decompositions
rspreadit 0.35** 0.76** 1.03** 14.26 15.88 3.13* -1.06** 45.81** 5.06 Yes -303.6**

(3.53) (3.97) (2.06) (0.46) (1.36) (1.92) (-2.15) (4.14) (1.18)
adv selectionit -0.53** -1.07** -1.39** -15.48 -11.21 -4.12** 1.75** 26.61* -6.27 Yes -298.3**

(-3.57) (-4.08) (-2.06) (-0.47) (-1.33) (-2.24) (3.29) (1.84) (-1.34)
#observations: 1082*167 (stock*day)
*/**: Significant at a 95%/99% level.
a: We use quintile-specific coefficients for the control variables and time dummies. For brevity, we only report the (across the quintiles) market-
cap-weighted coefficient for the control variables and its t-statistic.
b: We report the Dickey-Fuller test statistic based on the residuals in order to diagnose nonstationarity. A significant test statistic rejects the null
that the series contains a unit root, i.e. it rejects nonstationarity.
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IV regression for LSB and Hasbrouck decompositions

Mit = αi + γt + βAit + δXit + εit

Table 7: Lin-Sanger-Booth and Hasbrouck Decompositions: Nonsynchronous Autoquote Introduction as In-
strumental Variable

This table regresses the components of Lin-Sanger-Booth (LSB) and Hasbrouck decompositions on our algorithmic trading proxy. It is based on
daily observations in the period when autoquote was phased in, i.e. December 2, 2003, through July 31, 2003. The LSB decomposition accounts for
order persistence in decomposing the bid-ask spread. It identifies a fixed (transitory) component (LSB95 fixedit), an adverse selection component
(LSB95 adv selit), and a component due to order persistence (LSB95 order persistit) (see Section 3.3.1 and Lin, Sanger, and Booth (1995) for
details). As the LSB decomposition limits persistence to that of an AR(1) process, we also estimate a Hasbrouck VAR-based model to identify the size
of the trade-related (stdev tradecorr compit) and trade-unrelated (stdev nontradecorr compit) components of permanent price changes in between
transactions (see Section 3.3.2 and Hasbrouck (1991a, 1991b) for details). For the regressions, we use the exogenous nonsynchronous introduction of
autoquote to instrument for the endogenous algo tradit to identify causality from algorithmic trading to these LSB and Hasbrouck components. We
estimate Mit = αi + γt + βAit + δXit + εit

where Mit is a LSB or Hasbrouck component for stock i on day t, Ait is the algorithmic trading measure, and Xit is a vector of control variables,
including share turnover, volatility, 1/price, and log market cap. We always include fixed effects and time dummies, but leave out the control variables
in the Hasbrouck component regressions. We regress by quintile and report t-values based on standard errors that are robust to general cross-section
and time-series heteroskedasticity and within-group autocorrelation (see Arellano and Bond (1991)).

Coefficient on algo tradit Coefficients on control variablesa

Q1 Q2 Q3 Q4 Q5 share
turnoverit

vola−
tilityit

1/priceit
ln mkt
capit

time
dum-
mies

DF
test
statistica

Panel A: Lin, Sanger, and Booth (1995)
LSB95 fixedit 0.26** 0.59** 0.69** 9.91 8.97 2.35** -0.28 26.23** 3.85 Yes -296.4**

(3.63) (4.16) (2.26) (0.46) (1.36) (2.07) (-0.80) (3.81) (1.29)
LSB95 adv selit -0.26** -0.61** -0.84** -12.19 -7.72 -2.58* 0.57 15.70** -4.26 Yes -291.7**

(-3.46) (-3.80) (-2.14) (-0.46) (-1.32) (-1.85) (1.32) (1.99) (-1.15)
LSB95 order persistit -0.18** -0.30** -0.21 0.66 3.30 -0.82** 0.41** 30.68** -0.90 Yes -328.2**

(-3.06) (-3.10) (-1.60) (0.28) (1.21) (-2.33) (8.66) (6.24) (-1.43)
Panel B: “Hasbrouck decomposition”
stdev tradecorr compit -0.22** -0.26** -0.30* -3.39 -0.57** Yes -257.2**

(-2.62) (-3.08) (-1.69) (-0.30) (-2.73)
stdev nontradecorr compit 0.13** 0.13** 0.13 1.03 0.13 Yes -272.2**

(2.48) (2.36) (1.47) (0.28) (1.12)
#observations: 1082*167 (stock*day)
*/**: Significant at a 95%/99% level.
a: We use quintile-specific coefficients for the control variables and time dummies. For brevity, we only report the (across the quintiles) market-
cap-weighted coefficient for the control variables and its t-statistic.



Interpretation: generalized Roll model

i.i.d. innovation in efficient price in each of two periods,
mt = mt−1 + wt, with wt ∈ {−ε,+ε} equally likely

1. At t = 0, risk-neutral humans submit a bid and ask quote
and, given full competition, the first one arriving bids her
reservation price.

2. At t = 1, humans can buy the information w1 at cost c. If
bought, they can submit a new limit order.

3. At t = 2, two informed liquidity demanders arrive, one
with a positive private value associated with a trade, +θ,
the other with a negative private value, −θ.

Assume
1. 2c > θ i.e. cost of “observing” for humans is sufficiently

high (“quotes become stale”)
2. ε > θ i.e. large innovations prevent simultaneous

transaction by both liquidity demanders (unimportant)



Interpretation: generalized Roll model (ctd)

Humans only

4.1 A generalized Roll model

The “game” has two periods, each with an i.i.d. innovation in the efficient price:

mt = mt−1 + wt, (13)

where wt ∈ {ε,−ε} , each with probability 0.5. The game features three stages:

- At t = 0, risk-neutral humans can submit a bid and ask quote and, given full compe-

tition, the first one arriving bids her reservation price.

- At t = 1, humans can buy the information w1 at cost c. If they buy the information,

they can submit a new limit order.

- At t = 2, two informed liquidity demanders arrive, one with a positive private value

associated with a trade, +θ, the other with a negative private value, -θ.

We assume that 2c > θ, i.e., the cost of “observing” information for humans is

sufficiently high that they do not update their quotes. The technical assumption 2ε > θ is

also required so that only one of the two arriving liquidity demanders transacts at t = 2.

muu
2

mu
1

mud
2

mdd
2

m0

md
1

A0 A1

B0 B1

ε

There are four equally likely paths through the binomial tree: uu, ud, du, and dd,

where u represents a positive increment of ε to the fundamental value and d is a negative

increment. In equilibrium, humans do not buy the w1 information and update the quote at

t = 1, since they have to quote so far away from the efficient price to make up for c that

neither liquidity demander will transact at that quote (as 2c > θ). Given that they do not

acquire the w1 information, humans protect themselves by setting the bid price equal to

21

1. 2c > θ i.e. the cost of “observing” information for humans is high so that
they do not update quotes on the arrival of public information (“quotes
become stale”).

2. 2ε > θ i.e. efficient price innovations are large enough so that we rule out
that both liquidity demanders (+θ or −θ) transact at the same time (not
important).

A graph of the price tree and the (equilibrium) bid and ask quotes is:
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The important result is that the humans do not buy the w1 information and
update the quote at t = 1, since they have to quote so far away from the
efficient price to make up for c that neither liquidity demander will transact at
that quote (as 2c > θ). For example, if w1 is positive, they could put in a new
bid of mu

1 − ε−2c, but, even if w2 is negative, the liquidity seller’s private value
is too small to consume the bid quote.

In this case, we have the following outcomes:

probability state efficient transaction
price price

.25 uu muu
2 muu

2

.50 ud and du mud
2 = mdu

2 no transaction
.25 dd mdd

2 mdd
2

And, estimating the Hasbrouck model gives:

Pa − Pb = 2εu, u ∈ {1, 0,−1} is the trade sign, (2)

where Pa (Pb) is the transaction price after (before) the period. Clearly, there
is no public information component and all information comes from the order
flow.1

1For simplicity, I put u = 0 for no transaction and set Pa = Pb in this case. Ideally, one
repeats the game until a transaction occurs and it seems that the result continues to hold (i.e.
all innovation comes from order flow).

2

I at t = 1 public information does not enter quotes
I “welfare loss” due to possible unrealized private value



Interpretation: generalized Roll model (ctd)

Introduce an algo that buys information at zero cost

m0 − 2ε and the ask price equal to m0 + 2ε. One of the liquidity demanders trades at t = 2

if the path is either uu or dd; the quote providers break even. If the path is ud or du, then

there is no trade, because the liquidity demander’s private value is too small relative to the

spread.

Clearly, under these assumptions all price changes are associated with order flow,

and there is no public information component.

4.1.1 The model with algorithmic trading

muu
2

mu
1

mud
2m0

A0 A1

B0

B1

θ

Now we introduce an algorithm that can buy the w1 information at zero cost (c = 0).

The results at t = 0 remain unchanged. At t = 1, the algorithm optimally issues a new quote.

To illustrate the idea, suppose w1 > 0. The algorithm knows that it is the only liquidity

provider in possession of w1, and so it puts in a new bid equal to m0 − θ. If w2 > 0 as well,

then a transaction takes place at the original ask of m0 + 2ε. If w2 < 0, then a liquidity

demander will hit the algorithm’s bid. This bid is below the efficient price, so there will

eventually be a reversal, and there is a temporary component in prices. Contrariwise, if

w1 < 0, the algorithm places a new ask at m0 + θ, which is traded with if it turns out that

w2 > 0.

In the presence of algorithmic trading, part of the change in the efficient price is

revealed through a quote update without trade. Public information now accounts for a

portion of price discovery, and imputed revenue to liquidity suppliers is now positive. Thus,

the model can explain even the surprising empirical findings on realized spreads and trade-

correlated price moves. The model also delivers narrower quoted spreads and more frequent

trades, both of which are also observed in the data.
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3 After AT

We introduce a machine that can buy the w1 information at zero cost (c = 0).
All above is unchanged except that the machine issues a new quote at t = 1. To
illustrate the idea, suppose w1 > 0. The machine, if alone, enjoys full market
power and rationally puts in a new bid of mu

1 −ε−θ as depicted in the following
graph:

muu
2

mu
1

mud
2m0

A0 A1

B0

B1

θ

In this case, we have the following outcomes:

probability state efficient transaction
price price

.25 uu muu
2 muu

2

.25 ud mud
2 = mdu

2 mud
2 − θ

.50 du mdu
2 = mud

2 mdu
2 + θ

.25 dd mdd
2 mdd

2

And, estimating the Hasbrouck model gives:

Pa − Pb = w1 + εu− I[mud
2 ,mdu

2 ]θsign(w1), u ∈ {1,−1} is the trade sign, (3)

where the first two terms contain information and the last term is a transient
price change (reflecting the machine’s market rent). We see that the variance of
the efficient price innovations is unchanged, but the decomposition now assigns
half the value to public information (due to the quote update) and the other half
to order flow. And, the last term introduces pricing errors, which are absent in
the pre-AT era.
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Interpretation: generalized Roll model (ctd)

Efficient price is revealed without trades i.e. public information
enters quotes without trades

Revenue to liquidity suppliers is positive

Also matches other findings: more frequent trades, narrower
quotes

Note: model assumes that algo competition is less intense that
human competition



Conclusion

1. Panel regressions time-series increases in algo trading
correlate with liquidity improvement

2. Staggered introduction of structural change (autoquote) as
an instrument confirms algo trading lowers trading cost
and increases price informativeness

3. Surprisingly, revenues to liquidity suppliers increase with
algo trading. Market power for some period after
introduction?
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