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Motivation

ESRB annual report 2012, p. 16:

Structural reforms being promoted across the globe have
paved the way for improved risk management throughout
the financial system. In particular, the mandatory move
to clearing standardised over-the-counter (OTC)
derivatives trades via CCPs will help to reduce
counterparty risk between financial institutions, . . .

However, the more prominent role of CCPs will also
introduce new systemic risks. Mandatory clearing will
turn CCPs into systemic nodes in the financial system,
with unknown, but possibly far-reaching, consequences.
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Source: Heller and Vause (2012, Graph 11)
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Motivation (ctd)

1. Standard CCP risk management tools are

1.1 margin requirements (typically a member’s yet-to-clear trade
portfolio times volatility) and

1.2 a default fund.

2. E.g., SPAN methodology developed by Chicago Mercantile
Exchange (CME).
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Objective

1. Could systemic risk be hidden in cross-section of member
positions?

For example,

1.1 Fast-moving capital “bets” on the same side of a single asset
class, e.g., banks buying U.S. subprime mortgage exposure.

1.2 High-frequency traders all rapidly build position on the same
side of a single security (or risk factor).

2. How does this affect the counterparty risk that a CCP insures?

2.1 How does it affect the size of the default fund?
2.2 Is perfect diversity the social optimum?
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Findings

1. Perfect diversity of arbitrageurs’ capital across arbitrage
opportunities is not necessarily socially optimal.

2. Fire sales cannot be avoided in equilibrium; the size of the
default fund is endogenous and should depend on the size of
fire sales.

3. An increase in the fraction of intermediaries who become
arbitrageurs (and not standby investors) leads to lower overall
investment in arbitrage opportunities.
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3. Allen and Gale (1994): limited-participation model with
cash-in-the-market pricing.
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R =

{
1 +
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2 with probability π (L)

2. Agents. Unit mass of intermediaries. Each is endowed with
one unit of wealth, is risk-neutral, cannot borrow, and
operates under limited liability.

3. Agent choice.

3.1 Choose to become arbitrageur or standby investor.
3.2 If arbitrageur, decide how much to invest into the two

opportunities.
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2.1 It charges arbitrageurs a “down payment” or margin ex-ante.
2.2 It maintains a default fund for which it taxes all intermediaries
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3. The CCP maximizes welfare.

4. The CCP operates on two constraints:

4.1 It needs to remain solvent in all states of the world.
4.2 The level of credit is fixed ex-ante and margin therefore is

fixed at a pre-specified level m < 1/2.
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Time line
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1.1 CCP collects tax c to fill default fund and announces m.
1.2 Agents decide their type. A fraction ϕ becomes arbitrageur,

1-ϕ becomes standby investor.

2. Investment stage.
2.1 A fraction γ of arbitrageurs invests in opp C (crowded), the

others in opp D (deserted). They cannot distinguish them.

3. Payoff stage.
3.1 Payoffs are realized. Arbitrageurs are required to pay the

remainder of what was invested on their behalf. If they fail,
they are forced into default and lose their margin and default
fund contribution.

3.2 CCP inherits trade portfolios of failed arbitrageurs and sells
them to all non-defaulted intermediaries.

3.3 Default fund remainder is distributed equally across all
non-defaulted intermediaries.

3.4 Agents consume final wealth.
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Equilibrium

1. Equilibrium is analyzed in two stages.

1.1 Fix the proportion of arbitrageurs at exogenous value ϕ.
Analyze the outcome for different levels of crowdedness (γ).

1.2 Endogenize ϕ by equating the expected return for arbitrageurs
and standby investors.
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Proposition 1

1. (Arbitrageurs benefit from limited liability) Arbitrageurs invest
into a single arbitrage opportunity. They default if their
opportunity hits the low payoff state (“risk shifting”).



Default fund size

1. Default fund size depends on ϕ (not γ):

cϕ ≥ x

(
1

2
−m

)
︸ ︷︷ ︸
Net trade loss

+ x max

(
0,

1

2
− 1− ϕ

ϕ

)
︸ ︷︷ ︸

Potential fire sales

,

where x = ϕ
(

1−cϕ
m

)
is the total amount invested by

arbitrageurs.
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Equilibrium (ϕ endogenous)



Expected return intermediaries (α = 0, γ = 1/2)
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Proposition 2

1. (Existence and uniqueness) For each value of trade
crowdedness γ, there is a unique value of ϕ (fraction of
arbitrageurs) for which the expected return of an arbitrageur
equals that of a standby investor.

Pf.: Difference in expected net return monotone in ϕ.
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Equilibrium ϕ as function of γ
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Corollary 2

1. (Equilibrium)

1.1 Fire sale risk exists in equilibrium.

1.2 A higher return on arbitrage opportunities increases the
proportion of arbitrageurs and therefore lowers overall
investment.

1.3 More crowding reduces the proportion of arbitrageurs and
therefore increases overall investment.
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Proposition 3 (CAPM-like result)

1. (Survival risk premium) Expected return depends on how
relative survival of the agent’s type correlates with aggregate
loss:

β ∗ λ,

λ is the market premium of survival:

λ = ϕ× c̃ × var(l) =

= fraction arbitrageurs ×
net default fund contribution when arbitrageur fails ×
aggregate loss risk.
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Welfare

1. Grossman and Miller (1988) type end-users are introduced.
The demand curve of early sellers is assumed to be iso-elastic:

p =
θ

q1/η
,

where η is price-elasticity of demand (η = 0 in Grossman and
Miller, 1988).

2. WLOG late buyers are assumed to be perfectly price-elastic
(η =∞).

3. The two arbitrage opportunities correspond to two orthogonal
markets for immediacy, i.e., the groups of outside-customer
buyers and sellers do not overlap.
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Effect of crowdedness on welfare

1. The effect of a small change to diversity (dγ) on welfare is:

dW (ϕ, γ) = W22(dγ)2︸ ︷︷ ︸
“Direct” effect

+W11
∂2ϕ

(∂γ)2
(dγ)2

︸ ︷︷ ︸
“Indirect” effect

+O
(

(dγ)3
)



Proposition 4

1. The second-order Taylor expansion for welfare change is:

dW (ϕ, γ) =

“Direct” effect︷ ︸︸ ︷
W22(dγ)2 +

“Indirect” effect︷ ︸︸ ︷
W1

∂2ϕ

(∂γ)2
(dγ)2 +O

(
(dγ)3

)
,

(1)
where Wij denotes a partial derivative of the function W to
its i th and j th argument respectively.



Proposition 5

1. (Direct) The direct channel implies that welfare is weakly
reduced if there is more crowding in trade, i.e., a higher γ. If
demand is perfectly elastic then there is no reduction, in all
other cases there is a strict reduction.



Proposition 6

1. (Indirect effect, default fund channel) More crowdedness in
trade reduces the proportion of arbitrageurs and therefore
overall investment.



Proposition 7

1. (Indirect effect, alpha channel) More crowdedness in trade
changes α and therefore the proportion of arbitrageurs.

1.1 α remains unchanged when demand elasticity is one (η = 1),
1.2 α increases when demand is inelastic (η < 1),
1.3 α decreases when demand is elastic (η > 1).
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Proposition 7

1. (Indirect effect, alpha channel) More crowdedness in trade
changes α and therefore the proportion of arbitrageurs.

1.1 α remains unchanged when demand elasticity is one (η = 1),
1.2 α increases when demand is inelastic (η < 1),
1.3 α decreases when demand is elastic (η > 1).



Proposition 8

1. (Welfare and perfect diversity) The effect on welfare of more
crowding cannot be signed.



Calibration

1. Probability L is p = 0.000547 (∼ if daily, crash every 7 years).

2. Price elasticity of demand is η = 0.5 or η = 5.

3. Scaling parameter θ in demand function such that equilibrium
return on perfect diversity is αθ = 0.0003 (∼ bid-ask spread).

4. the required margin is m = 0.42 (∼ 7σ as in EMCF CoH).
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Elastic liquidity demand (η = 5)
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Effect of crowdedness on welfare

Welfare effect of small change away from perfect diversity

Demand
elasticity

Direct

Indirect,
through
change
default
fund
return

Indirect,
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change
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arbitrage
return

Indirect,
total

Total,
direct
+
indirect

Low, 0.5
High, 5
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Welfare effect of small change away from perfect diversity

Demand
elasticity

Direct

Indirect,
through
change
default
fund
return

Indirect,
through
change
in
arbitrage
return

Indirect,
total

Total,
direct
+
indirect

Low, 0.5 -1598 412 -296 116 -1483
High, 5 -40 77 4 81 42



Concluding remarks

1. Perfect diversity in investment is not necessarily socially
optimal, in particular when demand for immediacy is elastic
(Hollifield et al., 2006, JF: eqp ∼ 10).

2. Size default fund depends on the level of crowding.

3. Upgrade to CCP risk management 2.0?
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