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This document has the following supplemental material:

1. Section 1 presents the infinite horizon version of the Ho and Stoll (1981) model and solves it numeri-

cally. Fig. 7 graphs its solution.

2. Table 5 extends Table 3 by providing all parameters instead of just a subset.

1. A recursive version of the Ho and Stoll (1981) model and its numerical

solution

1.1. Recursive dynamic inventory model setup

Ho and Stoll (1981) are the first to set up the dynamic program for the risk-averse intermediary and

cast it in a finite time horizon where utility is generated only by final wealth. To better fit our analysis of

liquidity supplier inventory and prices on the NYSE, we take the model, cast it in recursive form with an

infinite horizon, and solve for the intermediary’s optimal policy and the resulting stationary distribution.1

1.1.1. Liquidity demand process

Ho and Stoll (1981) use a reduced form model for the transaction rates (where transaction size is fixed

at one unit) of public buyers and sellers that was first proposed by Garman (1976). These transaction rates

are linear in the ask and bid price, with the public buy rate decreasing in the ask price and public sell rate

increasing in the bid price.

The social cost analysis requires a bit more structure on the liquidity demand process. Instead of sep-

arating the two sides of the market, we generalize the investor arrival process by considering agents who

arrive at the market and depending on the prices quoted decided whether to buy, sell, or not trade. The in-

vestors incur idiosyncratic endowment shocks that can be hedged by an offsetting position in a (single) risky

security that trades in the market. This private value v is stochastic and zero in expectation as it is a private

value relative to a security’s common value that we fix at zero throughout for ease of notation.2 The agent
1 Others also study dynamic inventory control. Madhavan and Smidt (1993) further enriches the Ho and Stoll (1981) setting by

adding an informed liquidity demander. Amihud and Mendelson (1980) analyze a dynamic inventory model in recursive form where
a risk-neutral intermediary maximizes average profit and stays away from an exogenously given maximum inventory constraint as
arriving at that state limits her profit opportunity (she can essentially exit on one side). We work from the Ho and Stoll (1981)
model as we focus on the price risk associated with an suboptimal inventory position.

2 The common value here is the equilibrium price in the absence of the liquidity friction that is modeled. It is the price at which
all idiosyncratic shocks wash in the crosssection of investors. We refer to the investors’ idiosyncratic desire to trade as their hedging
values, although their private motivations for trade could be more general.
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arrives at the market and trades only if v is above the ask (agent buys a unit) or below the bid (agent sells a

unit).3 We parameterize this process as follows. The idiosyncratic shocks happen, and agents arrive at the

market according to a Poisson process with rate 2λθ. Conditional on arrival, the private value v is uniformly

distributed with support [− 1
θ ,

1
θ ]. This specification implies Fig. 6 for the public buy (sell) rate at the ask

(bid) price, where the arrival rate per private value is derived as the arrival rate (2λθ) times the private value

density (1
2θ) and the public buy and sell rates follow by integrating over private value rates from the ask to

1
θ and from 1

θ to the bid, respectively. The total private value rate (or the size of the market) is obtained by

setting the bid and ask price equal to zero and is thus representated by the size of the triangle defined by − 1
θ

and 1
θ on the price axis and λθ on the transaction rate axis. The size of this area is λ, which represents the

size of maximum consumer surplus. The realized private value rate depends on the bid and ask price set by

the intermediary who produces liquidity. If she is risk-neutral and, therefore, operates on a zero cost rate,

she charges the monopoly price p = 1
2θ and, for public buys, captures a producer surplus rate equal to the

square defined by A in the graph. The consumer surplus rate on this side of the market is the triangle B, and

the deadweight loss due to monopoly power is C on this side of the market.

[Insert Figure 6 near here]

The second parameter θ captures the dispersion of private values and, therefore, governs the price sen-

sitivity of the net transaction rate (defined as the public buy rate minus the public sell rate) standardized by

the investor arrival rate. Lowering of both the bid quote and the ask quote by s increases the rate of buys

minus sells by 2sλθ2, which, standardized by the arrival rate of 2λθ, equals θs. Comparative statics show

that this is an important parameter in the intermediary’s optimization behavior. θ parallels the price elasticity

of demand that a monopolist faces in a standard product market.

1.1.2. The intermediary’s dynamic program

We set up the intermediary’s optimization in discrete time to solve for her optimal policy and obtain a

stationary distribution of pricing errors and inventory. This distribution characterizes the series’ time series

properties, i.e., contemporaneous as well as lagged moments. The Poisson private demand arrivals are

modeled as discrete probabilities that are linear in prices.4 The intermediary is risk-averse and maximizes
3 If agents have the opportunity to contact the market more than once then v can be interpreted as the hedging benefit from the

current trading opportunity until the investor’s next contact with the market [see Weill (2007) and Lagos et al. (2011) for more on
investors’ intertemporal optimization].

4 This is a reasonable approximation as the Poisson process itself is the limiting case of event probabilities that are linear in
small discrete time increments.
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expected utility where her utility is the standard time-separable CRRA utility. She is a monopolist liquidity

supplier who produces liquidity supply by issuing firm price quotes that are take-it-or-leave-it prices that

liquidity demanders see when arriving at the market. She can therefore not price discriminate and capture

the full consumer surplus.

Let V(.) be the maximum utility that the intermediary can achieve when starting off with an inventory of

i0 shares and a wealth of w0:

V(i0,w0) = max
{ct ,at≤ 1

θ ,bt≥− 1
θ }∞t=0

E[Σ∞t=0β
tu(ct)|i0,w0] (38)

subject to the budget constraint

wt+1 = R(wt − ct) + it∆mt+1 + at max(−∆it, 0) − bt max(∆it, 0) (39)

and subject to the following transition probabilities across inventory states:

P[it+1 = it − 1|it] =
∫ 1

θ

at

(2λθ)
(

1
2
θ

)
dv = λθ(1 − θat) (40)

and

P[it+1 = it + 1|it] = λθ(1 + θbt),

where it is the intermediary’s inventory position at time t, wt is her wealth, ct is her consumption at time t, β

is her discount factor, R is the gross risk-free return, ∆mt is her stochastic dividend in period t+1 (which runs

from time t to time t+1), which has zero expectation and a variance equal to σ2, and bt (at) is the bid (ask)

price she sets at time t. The stochastic dividend stream is a modeling device to minimize the accounting in

the model. We emphasize that no sources of uncertainty are ignored (see also Ho and Stoll, 1981, p. 52).

We exploit the recursive nature of the problem that leads to the following Bellman equation for the
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inventory state i (using the law of iterated expectations):

V(i,w) = max
ciw,aiw,biw

u(ciw) + βE
∆m

[
V(i + 1,R(w − ciw) + i∆m − biw)

]
λθ(1 + θbiw) +

βE
∆m

[
V(i − 1,R(w − ciw) + i∆m + aiw)

]
λθ(1 − θaiw) + (41)

βE
∆m

[
V(i,R(w − ciw) + i∆m

]
(1 − λθ(1 + θbiw) − λθ(1 − θaiw)),

where ∆m is the stochastic dividend in the oncoming period.

With upper bounds on the absolute inventory position and wealth it is straightforward to show that the

functional equations defined by Eq. (41) define a contraction in the (i,w) space by verifying Blackwell’s pair

of sufficient conditions (see Ljungqvist and Sargent, 2004, p. 1012). This implies the existence of a unique

fixed point in the space of bounded continuous functions and therefore guarantees the existence of a unique

equilibrium.

The numerical solution illustrates that the intermediary seems to endogenously stay away from large

inventory and wealth upper bounds for our calibration in which relative risk aversion is larger than one and

the reciprocal of the discount rate (β−1) is strictly larger than the risk-free rate (R). The endogenous upper

bound on wealth is best understood based on Huggett (1993), which shows that for exogenous nondiver-

sifiable endowment risk the two parameter restrictions guarantee that the agent does not let wealth grow

infinitely large. The intuition is that with CRRA utility the agent’s willingness to bear absolute risk grows

with wealth. The reciprocal of the discount rate being strictly larger than the risk-free rate makes her prefer

consuming today over tomorrow. It is, therefore, perfectly intuitive that at some level of wealth she prefers

consuming out of wealth over accumulating more given that risk is less of a consideration on high wealth

levels.

The model we propose extends this setting as the exposure to idiosyncratic risk (inventory) is decided

upon endogenously. The same intuition applies for why she does not let wealth grow to infinity. In addition,

the intermediary does not visit extreme inventory states as her earning potential does not change with inven-

tory, whereas her cost does given the stochastic dividend exposure (i∆m). In the numerical solution we set

the bounds wide enough so that the intermediary decides never to visit the upper bound states.
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1.2. The numerical solution: the optimal policy and implied stationary distribution

We numerically solve the intermediary’s dynamic program, which is summarized by Eq. (38). The

calibration follows, to the extent possible, the base case parametrization proposed by (Ho and Stoll, 1981,

p. 67). We present the calibration details in Section 2.

Fig. 7 presents the numerical solution to the intermediary’s dynamic program. Panel A plots the value

function which is defined as the maximum discounted utility the intermediary obtains conditional on starting

off in a particular inventory-wealth state. Its concavity is generated by the time discounting in the dynamic

program (see Ljungqvist and Sargent, 2004, Section A.2.). Given the value function and the Bellman equa-

tions, it is a straightforward one-period optimization to establish the intermediary’s optimal control policy

(i.e., bid price, ask price, and consumption) in each inventory-wealth state. This control policy, in turn,

determines the system transition laws. If she is started off with sufficient wealth and zero inventory, she

eventually ends up in the stationary distribution over the inventory-wealth states, which is also depicted in

Panel A. The stationary distribution illustrates that she endogenously chooses to stay far from the inventory

and wealth upper and lower bounds.

[Insert Figure 7 near here]

Panel B of Fig. 7 illustrates the optimal control policy, which consists of the bid price, the ask price, and

the consumption in each of the inventory-wealth states. The graphs provide the midquote and the bid-ask

spread instead of the bid and ask price separately to better illustrate price pressures. The graph confirms

the intuition that the intermediary skews the midquote to generate an transactions that mean-reverts her

inventory. She lowers the midquote on long positions and raises it on short positions.

Two observations are particularly useful to motivate the econometric model we propose for the empir-

ical analysis. First, the intermediary’s policy seems to support the first-order approximation we use in the

econometric model, which is that price pressure is linear in inventory and does not depend on wealth. The

wealth result is particularly useful given that we do not have access to data on the intermediary’s wealth

level. Second, relative to midquote changes the bid-ask spread appears constant across states.5 It is only

slightly higher than the spread that a risk-neutral intermediary would charge: 2(2θ)−1 = 0.2.6 This is a
5 Zabel (1981) and Mildenstein and Schleef (1983) find that the spread is independent of inventory. Ho and Stoll (1981) find

inventory has a very small effect on the spread.
6 It is not surprising that the price of immediacy, i.e., the spread, is slightly higher because the marginal cost of production is no

longer zero but becomes positive when the intermediary is risk-averse.
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reassuring result as it confirms the Grossman and Miller (1988) argument that the spread captures the cost

of processing orders (or monopoly rents in our case), whereas midquote changes capture the dynamic trade-

off the intermediary does between staying one more period on a costly suboptimal position or discounting

prices to mean-revert that position. This apparent orthogality of monopoly rents that are reflected in the

spread and limited risk-bearing capacity that lead to price pressures suggests that competition in the inter-

mediation sector on unchanged overall risk-bearing capacity drives down the bid-ask spread to marginal cost

but leaves price pressures unchanged. That is, the fundamental trade-off of discounting price versus bearing

idiosyncratic risk for an additional period remains. This is our intuition and to formally derive a general

result is beyond the scope of the current paper.

The consumption graph illustrates that the intermediary insures against adverse dividend shocks by

maintaining a wealth buffer. She consumes less than expected earnings on low wealth levels and more

than expected earnings on high wealth levels. This is best illustrated by the zero inventory policies as her

expected earnings of a potential current period transaction equal a constant 2× (1−0.5×0.23)∗×0 = 0.98 as

prices are unchanged across the wealth dimension. She consumes less than these expected earnings on low

wealth levels and thus insures against adverse future dividend shocks through savings. She consumes more

than expected earnings and thus eats out of her large wealth buffer on high wealth levels. This consumption

pattern makes wealth mean-reverting. Furthermore, she reduces her consumption when on a larger nonzero

inventory, which reflects the higher need for a wealth buffer given that she is in a more risky state.

2. Details on the calibration and the solution method

2.1. Base case model calibration

We numerically solve the intermediary’s dynamic program, which is summarized by Eq. (38). The

calibration follows, to the extent possible, the base case parametrization proposed by (Ho and Stoll, 1981,

p. 67).

1. The intermediary’s coefficient of relative risk aversion (ρ) is two.

2. The time interval length is one day.

3. The arrival rate function is g(x) = λ0(1−θx), where λ0 = 1 and θ = 5 so that each day the representative

investor arrives and considers a trade. The transaction size is ten units.7
7 Ho and Stoll (1981) use the same θ but set λ0 = 2, 000 as the annual transaction rate. To match their arrival rate we set
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4. The stochastic dividend risk on one inventory unit equals σ =
√

0.50/200 = 0.05, where one year

contains two hundred trading days.

5. The intermediary’s discount rate β is 0.9 to capture the two week horizon Stoll proposes for the

intermediary.8

6. The intermediary earns a gross daily risk-free rate of R = 1 + 0.10/200 on her savings for the next

period.

We then discretize the set of inventory-wealth states (i,w) by choosing a grid with carefully selected bounds

for both the inventory and the wealth dimension of the state. We choose upper bounds for inventory and

wealth so that the state-space becomes a finite set. We set inventory bounds equal to -50 and 50 and verify

that expost these inventory states appear to be nonbinding constraints.9 The step size for the inventory

dimension is governed by the transaction size ten. We choose a wealth upper bound of ten where we again

verify that the limit does not bind endogenously. We set the wealth lower bound equal to zero, which is an

absorbing bankruptcy state from which point on consumption is arbitrarily small.10 The wealth step size is

constrained by the stochastic dividend risk, which is implemented as a discrete random variable where the

outcome is plus or minus σ with equal probability. As the inventory dimension contains only multiples of

ten, the stochastic dividend commands a (maximum) wealth step size of 10 × 0.05 = 0.5.11

We then set up the discretized version of the Bellman equation, which is a trivial extension of the

system defined by Eq. (41). The step size on the wealth dimension necessarily discretizes the bid and ask

prices that the intermediary can choose, but we can get as close as one might desire to a continuum of

prices by shrinking the wealth step size at the cost of computational speed. After discretizing, we solve the

dynamic program numerically by iterating on the Bellman equation, relying on the contraction property of

the recursive mapping to achieve convergence.

the transaction size equal to ten with the interpretation that one successful daily transaction means 2, 000/200 = 10 intraday
transactions of one inventory unit.

8 A 0.9 discount rate implies that roughly two-thirds of the total discounted value of a dividend stream of one falls into the first
two weeks.

9 One has to be careful here, as in addition to it being a very risky state, the intermediary internalizes that she can exit this state
only on one side (i.e., less inventory), which limits her earning potential. Ideally, we would like to let the inventory upper bound I
tend to infinity to rule out this nonrisk explanation. We simulate such limit numerically and verify that the solution does not change
by taking larger upper bounds.

10 CRRA utility satisfies the Inada conditions so that intermediaries steer clear of this state.
11 Technically, the intermediary could still end up strictly outside of wealth interval if she gets a large enough draw on the

stochastic dividend. In the implementation, we steer her to the lower or upper bound of wealth in the cases that this happens. This
does not affect our solution as the intermediary endogenously chooses to stay away from those states.
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2.2. Bellman equations for the interior of the inventory-wealth state domain

We arrive at the following discrete state dynamic program:

V(i,w) = max
w̃iw,aiw,biw

u(w − R−1w̃iw) (42)

+βE
∆m

[V(i, w̃ + i∆m)](1 − g(aiw) − g(biw))

+βE
∆m

[V(i + 1, w̃ + i∆m + biw∆i) + ∆m]g(biw)

+βE
∆m

[V(i − 1, w̃ + i∆m − aiw∆i) + ∆m]g(aiw)

g(x) = 1 − θx (probability of a transaction)

i ∈ {−50,−40, . . . , 50} w ∈ {0, 0.5, . . . , 10},

where the three expected value terms correspond to no-arrival, seller-arrival, and buyer-arrival, respectively.

Eq. (42) defines the Bellman equations for the nonboundary inventory-wealth states. But, before turning

to the boundary Bellman equations, we need to make sure that we stay on the inventory-wealth grid in the

iterations. This motivates a binomial distribution for stochastic dividend

P[∆m = −σ] = P[∆m = +σ] = 0.5 (43)

and restricts the set of admissible controls to

aiw, biw ∈ {0, 0.05, 0.10, . . . } s.t. g(aiw), g(biw), 1 − g(aiw) − g(biw) ≥ 0 (44)

w̃iw ∈ {0, 0.5, . . . ,min(10, 0.5⌊2Rw⌋)} (45)

The upper bound for end-of-period wealth w̃iw prevents negative current period consumption.

2.3. Bellman equations for the boundary of the inventory-wealth state domain

As for the boundary inventory states, we adjust the Bellman equation defined in Eq. (42) by reducing

the set of admissible controls. For the maximum inventory state, for example, we restrict the bid price to

bIw = θ−1 (which effectively sets the seller arrival rate to zero). As for the boundary wealth states, in the zero

wealth state we keep the intermediary on a low enough consumption level relative to her earning power in

the nonzero wealth state to make her endogenously choose to stay away from the bankruptcy state. In states
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close to the maximum wealth state, we redirect her to the maximum wealth state if she enjoys a stochastic

dividend that would make her transit to a larger wealth than the maximum wealth. One interpretation is that

the government taxes excessive wealth away in these high wealth states. We reiterate that these assumptions

on the maximum inventory or maximum wealth Bellman equations are inconsequential as we choose the

maximum inventory and maximum wealth boundary large enough so that the intermediary endogenously

chooses never to get near to these states (see discussion in footnote 11).

From this point on, we follow (Ljungqvist and Sargent, 2004, Subsection 4.2, p. 95), i.e., we iterate on

the Bellman equation and the contraction property of the recursive mapping guarantees convergence to the

unique solution.
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Table 5
State space model estimates.

This table reports the parameter panels that were ommitted from Table 3.

Quintile 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 All t-statistic
Panel I: σ(u)i error term permanent volatility (in basis points)
Q1 116 117 121 126 164 187 241 183 177 120 101 98 146
Q2 133 127 130 134 171 201 251 200 196 141 118 116 160
Q3 140 133 136 144 185 200 241 196 193 141 128 127 164
Q4 151 144 144 145 182 199 224 197 185 148 133 140 166
Q5 166 162 168 167 211 222 246 225 225 182 161 174 192
All 141 136 140 143 182 202 240 200 195 146 128 131 166
Panel J: σ( f )t common factor volatility (in basis points)
All 57 46 67 98 122 106 152 130 154 98 70 63 97
Panel K: βi
Q1 0.99 0.98 1.04 0.99 0.88 0.73 0.32 0.79 0.99 0.97 0.90 0.94 0.88 14.46
Q2 1.09 0.87 0.95 0.85 0.82 0.55 0.35 0.85 1.00 1.08 1.04 1.11 0.88 12.51
Q3 1.15 1.02 0.93 0.82 1.02 0.56 0.48 0.84 1.06 1.11 1.21 1.14 0.94 13.21
Q4 1.12 0.72 0.67 0.73 0.90 0.48 0.35 0.77 0.90 1.01 1.25 1.24 0.84 10.41
Q5 1.02 0.69 0.58 0.63 0.87 0.36 0.43 0.79 0.77 0.93 1.28 1.20 0.79 9.90
All 1.07 0.86 0.83 0.80 0.90 0.54 0.39 0.81 0.94 1.02 1.13 1.13 0.87 13.66
Panel L: β0

i
Q1 0.07 0.01 0.03 0.05 0.06 0.09 0.18 -0.04 -0.02 0.01 0.01 0.02 0.04 2.27
Q2 -0.11 0.01 -0.09 -0.03 0.01 0.02 0.13 -0.12 -0.08 -0.09 -0.04 -0.02 -0.03 -1.62
Q3 -0.22 -0.15 -0.12 -0.12 -0.16 -0.06 0.08 -0.08 -0.13 -0.15 -0.11 0.02 -0.10 -4.18
Q4 -0.33 -0.12 -0.10 -0.16 -0.20 -0.08 0.14 -0.07 -0.03 -0.08 0.01 0.10 -0.08 -2.19
Q5 -0.35 -0.19 -0.08 -0.18 -0.32 -0.09 -0.12 -0.27 -0.12 -0.20 -0.15 0.05 -0.17 -5.31
All -0.19 -0.09 -0.07 -0.09 -0.12 -0.02 0.08 -0.12 -0.08 -0.10 -0.06 0.03 -0.07 -3.38
Panel M: β1

i
Q1 0.04 0.01 0.02 0.03 0.06 0.03 0.09 -0.04 0.01 -0.02 0.02 -0.02 0.02 1.81
Q2 -0.02 0.05 -0.03 -0.00 0.04 -0.03 0.08 -0.09 0.00 -0.04 -0.00 -0.00 -0.00 -0.29
Q3 -0.09 -0.03 -0.04 -0.02 -0.04 -0.07 0.06 -0.05 -0.07 -0.06 -0.07 0.08 -0.03 -2.27
Q4 -0.13 -0.01 -0.01 -0.04 -0.13 -0.04 0.08 -0.09 -0.08 -0.05 -0.07 0.13 -0.04 -1.64
Q5 -0.20 -0.07 0.02 -0.06 -0.19 -0.04 -0.03 -0.18 -0.15 -0.13 -0.14 0.12 -0.09 -3.29
All -0.08 -0.01 -0.01 -0.02 -0.05 -0.03 0.06 -0.09 -0.06 -0.06 -0.05 0.06 -0.03 -2.11
Panel N: β2

i
Q1 0.04 -0.01 0.02 0.03 0.04 0.04 0.04 -0.01 -0.01 -0.01 -0.00 -0.04 0.01 1.70
Q2 -0.03 0.03 -0.03 -0.01 0.04 -0.03 0.05 -0.08 0.01 -0.03 -0.01 0.01 -0.01 -0.74
Q3 -0.04 -0.02 -0.07 -0.02 -0.03 -0.06 -0.00 -0.07 -0.02 -0.04 -0.02 0.07 -0.03 -2.70
Q4 -0.06 0.02 -0.06 -0.07 -0.09 -0.07 0.03 -0.11 0.01 0.00 -0.04 0.11 -0.03 -1.66
Q5 -0.14 -0.01 -0.03 -0.06 -0.09 -0.07 -0.03 -0.15 -0.04 -0.03 -0.10 0.12 -0.05 -2.72
All -0.05 0.00 -0.03 -0.03 -0.03 -0.04 0.02 -0.09 -0.01 -0.02 -0.03 0.05 -0.02 -2.21
Panel O: β3

i
Q1 -0.00 0.01 0.00 0.00 0.01 0.01 0.04 -0.00 0.01 -0.00 -0.00 -0.02 0.00 1.02
Q2 -0.03 0.03 0.00 0.00 0.03 -0.01 0.04 -0.03 0.01 -0.03 -0.01 -0.02 -0.00 -0.27
Q3 0.00 0.02 -0.01 0.00 -0.01 -0.02 0.00 -0.02 -0.00 -0.02 -0.04 0.03 -0.01 -1.12
Q4 -0.03 0.05 -0.03 -0.02 -0.02 -0.02 0.04 -0.03 0.03 0.00 -0.04 0.08 -0.00 -0.03
Q5 -0.05 0.02 0.00 -0.02 -0.03 -0.02 0.00 -0.06 -0.00 -0.01 -0.03 0.08 -0.01 -1.00
All -0.02 0.03 -0.01 -0.01 -0.00 -0.01 0.02 -0.03 0.01 -0.01 -0.02 0.03 -0.00 -0.50
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Fig. 6. Consumer and producer surplus.
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Panel A: Value function and stationary distribution
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Panel B: Optimal controls: midquote, bid-ask spread, and consumption
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Fig. 7. Value function, stationary distribution, and optimal control. This figure illustrates the numerical solution to a dynamic
programming problem of an intermediary who maximizes expected utility while quoting bid and ask prices to liquidity demanders
whose arrival rates are less than perfectly price elastic. Panel A plots the value function (left) and the stationary distribution
(right) over all the inventory-wealth states that the intermediary could find herself in. Panel B illustrates her optimal control by
plotting the midquote (left), the bid-ask spread (right), and her consumption (bottom) conditional on her inventory-wealth state. The
parametrization of the problem is standard and follows Ho and Stoll (1981). The intermediary has constant relative risk aversion
utility with a coefficient of relative risk aversion equal to two. She operates at a daily frequency and has a two-week horizon
that we capture by a (daily) discount factor of 0.9. Without loss of generality, we fix the fundamental price at zero and capture
inventory price risk through a stochastic dividend with mean zero and daily standard deviation of $0.05. The probability of a public
buyer (seller) arrival depends linearly on the ask (bid) price, where the slope θ captures the elasticity of arrival rates to prices (the
benchmark is no friction, i.e., θ = ∞).
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